

Cerebus[™]System

The Cerebus™ system is a highly-configurable and easy-to-use multichannel data acquisition system for animal neurophysiology experiments. The Cerebus™ neural signal processor captures, processes and analyzes action potentials (spikes), field potentials and other physiological signals in relation to experiment state events™ in real-time.

Neural Signal Processor Real-time processing for up to 128 electrodes, 16 auxiliary analog channels, and individual TTL or strobed word experiment events (multiple systems can be synchronized for higher channel counts)

128-Channel Front-End Amplifier

Amplifies, filters and digitizes neural signals before converting to a single multiplexed optical output

Applications

The Cerebus™ System is configurable for in vivo (bird, rodent, feline, monkey) and in vitro (cell culture, brain slice) preparations to assist in the study of:

- » Sensory perception
- » Motor control
- » Attention, cognition, and decision making
- » Learning and memory
- » Drug and toxin effects
- » Epilepsy
- » Parkinson's disease
- Neuroprosthetics
- Brain-machine interfaces
- » Neurostimulation therapies

Key Features

Hardware

- » Ultra-compact design
- » Fiber-optic link for noise immunity
- » 8, 16, 32, 64, 96, 128 and 256 channel configurations
- » High-resolution signal recording (30 kHz at 16 bits)
- Compatible with low- and high-impedance electrodes
- » Electrode impedance and crosstalk measurement
- » Flexible I/O options for synchronizing with behavior, stimulus and video systems
- » Parallel multi-PC control and operation

Software

- » Per-channel user-defined digital filters
- Up to 3 signal streams per channel
- » Real-time 2D/3D spike sorting (including tetrodes)
- » 2-channel oscilloscope (time and frequency modes)
- » User-defined analog outputs
- » Digital noise (line and magnetic) cancellation
- » Interface to NeuroExplorer, Spike2, MATLAB, C/C++, and other 3rd-party software
- » SDKs for MATLAB and C++ (offline and online)
- Offline spike sorter

The Cerebus™ GUI software

Provides a user-friendly interface to configure the signal processing and visualize the processed data as it is being acquired. The system's powerful and flexible digital architecture allows the user to perform a variety of online functions simultaneously from digital filtering and adaptive 3D spike sorting to data streaming and storage.

3D PCA

Quickly isolate units in 3D PCA space

Multichannel Display

See individual action potentials (units) on every channel

N-trode

(for a tetrode)
Online feature vs. feature plots for
tetrode sorting

Raster

Scrolling view of spikes, filed potentials and event data

Activity Map

Geometric display of spike firing rates across channels

Specifications

Cerebus™ Front-End Amplifier/Digitizer

Number of inputs	32 to 128 electrodes in banks of 32
Differential configuration	Each input amplified with respect to the common reference in each bank
AC input range	± 8.191 mV
AC input conversion	16-bit resolution at .25 μ V/bit
Common mode rejection input range	± 3.0 V between inputs and ground
Common mode rejection	>100 dB at 50/60 Hz
High pass filter	1st-order 0.3 Hz (full-bandwidth mode)
Low pass filter	3 rd -order Butterworth 7.5 kHz
Input referred noise	$<3.0\mu\text{Vrms}$ (14 $\mu\text{Vp-p})$ at full bandwidth
Input impedance	>10 ¹² Ω 3 pF
Input bias/leakage	± 5 pA typical, ± 20 pA max
Channel crosstalk	<1 LSB for all combinations
Maximum input voltage	± 5.0 V between inputs and ground
Input connection	34-pin 2mm male header for each bank
Ground connection	4.4 mm banana jack / binding post
Output connection	MTRJ digital fiber optic port
Headstage power output	$\pm5.0\text{V},$ up to 150 mA for powering optional headstages
Power supply	Five-channel external power supply with sequencing, 120 VAC/60 Hz or 220 VAC/50 Hz input
Dimensions	110 mm (H) x 42 mm (W) x 186 mm (L)
Weight	600 g

Neural Signal Processor with Experiment I/O

Digital signal processing	Adaptive noise cancellation and 4th-order hi/band/lo pass digital filtering Separate digital filters for simultaneous field potential and spike processing for up to 144 channels
Front-end input	MTRJ digital fber optic port
Experiment analog inputs	Sixteen ±5.0 V, 16-bit analog inputs for experiment or neural signals (BNC)
Experiment analog outputs	Four ± 5.0 V, 16-bit analog outputs (BNC) Two line-level audio outputs (BNC + 3.5 mm)
Experiment TTL and strobedword inputs	One 16-bit input port (DB-37) with individual or strobed-word event detection
Experiment digital outputs	Four single-bit digital outputs (BNC), Synchronization TTL output (BNC)
Experiment serial I/O	RS 232 port (DB-9), 115 kbps
PC interface	1 Gbit Ethernet
Power supply	3-pin PC power connector (110-240 VAC, 50-60 Hz)
Dimensions	88 mm (H) x 325 mm (W) x 425 mm (L)
Weight	6.8 kg
Mounting options	Table-top rubber feet or 2U slot in 19-inch instrument rack

Computer requirements (not included with system) Minimum requirements: 2 GHz Intel® Core™2 Duo or equivalent AMD® processor one available PCI slot 250 GB hard drive 4 GB RAM dual-screen monitor with Windows XP (32-bit) or Windows 7 (32- or 64-bit)

System

Complete Cerebus™ System

128-channel data acquisition system 96-channel data acquisition system 64-channel data acquisition system 32-channel data acquisition system 16-channel data acquisition system 8-channel data acquisition system

Complete Cerebus™ System

Front-End Amplifier/Digitizer

- · One fiber-optic cable (10 m)
- · Four CHA-32 adapter boards
- Four 40-pin ribbon cables (20 cm)
- · User guide with connection diagrams
- \cdot One 128-channel neural signal simulator

Upgrade Boards

32-channel front-end amplification board

Neural Signal Processor

- · One gigabit ethernet card
- · One gigabit ethernet cable
- · One power cable
- · User guide with connection diagrams
- · User interface and control software for Windows XP/Windows 7